On shifted Mascheroni series and hyperharmonic numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A symmetric algorithm for hyperharmonic and Fibonacci numbers

In this work, we introduce a symmetric algorithm obtained by the recurrence relation an = a k n−1+a k−1 n . We point out that this algorithm can be apply to hyperharmonic-, ordinary and incomplete Fibonacciand Lucas numbers. An explicit formulae for hyperharmonic numbers, general generating functions of the Fibonacciand Lucas numbers are obtained. Besides we define ”hyperfibonacci numbers”, ”hy...

متن کامل

Shifted quadratic Zeta series

It is well known that the Riemann Zeta function ζ ( p ) = ∑∞n=1 1/np can be represented in closed form for p an even integer. We will define a shifted quadratic Zeta series as ∑∞ n=1 1/ ( 4n2−α2)p . In this paper, we will determine closed-form representations of shifted quadratic Zeta series from a recursion point of view using the Riemann Zeta function. We will also determine closed-form repre...

متن کامل

Shifted Jacobi Polynomials and Delannoy Numbers

We express a weighted generalization of the Delannoy numbers in terms of shifted Jacobi polynomials. A specialization of our formulas extends a relation between the central Delannoy numbers and Legendre polynomials, observed over 50 years ago [12, 17, 19], to all Delannoy numbers and certain Jacobi polynomials. Another specialization provides a weighted lattice path enumeration model for shifte...

متن کامل

ON THE NORMS OF r-CIRCULANT MATRICES WITH THE HYPERHARMONIC NUMBERS

In this paper, we study norms of circulant matrices H = Circ(H 0 , H (k) 1 , . . . ,H (k) n−1) , H = Circ(H k , H (1) k , . . . ,H (n−1) k ) and r−circulant matrices Hr = Circr(H 0 ,H 1 , . . . ,H n−1) , Hr = Circr(H (0) k ,H (1) k , . . . ,H (n−1) k ) , where H (k) n denotes the n th hyperharmonic number of order r. Mathematics subject classification (2010): 15A60, 15B05, 11B99.

متن کامل

Betti Numbers of Monomial Ideals and Shifted Skew Shapes

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2016

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2016.04.028